+ M2
Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : needsPackage("UnirationalHurwitzSchemes")
o1 = UnirationalHurwitzSchemes
o1 : Package
i2 : --------------------------------------------------------------------------
-- Theorem 2.2 --
-- We construct a curve C of genus 10 and bidegree (6,10) in P^1xP^2 --
-- by double liaison, as described in the paper. We verify step-by-step --
-- all the assertions of the paper. As a consequence, the projection --
-- C --> P^2 yields a general element of W^2_{10,10}, which has a Serre --
-- dual model a general element of W^1_{10,8}. --
--------------------------------------------------------------------------
p=32009; -- a prime number
i3 : Fp=ZZ/p; -- a prime field
i4 : S=Fp[x_0,x_1,y_0..y_2,Degrees=>{2:{1,0},3:{0,1}}];
i5 : -- Cox-ring of P^1 x P^2
m=ideal basis({1,1},S);
o5 : Ideal of S
i6 : -- On P1xP2, we start with a rational curve of degree 4 together
-- with 5 general lines. Call C'' their union.
ICrat=ideal random(S^1,S^{2:{-2,-1}});
o6 : Ideal of S
i7 : ICratSat=saturate(ICrat,m);
o7 : Ideal of S
i8 : ILines=apply(5,i->ideal random(S^1,S^{{ -1,0},{0,-1}}));
i9 : C''=saturate(intersect(ILines|{ICratSat}),m);
o9 : Ideal of S
i10 : -- We choose random forms in the ideal of C'' of bidegree (5,2)
-- that define the complete intersection Y' and compute the
-- saturated ideal C' of the residual curve
fY'={{5,2},{5,2}};
i11 : Y'=ideal(gens C'' * random(source gens C'',S^(-fY')));
o11 : Ideal of S
i12 : time C'=Y':(C''); -- about 12 seconds
o12 : Ideal of S
i13 : C'=saturate(C',m);
o13 : Ideal of S
i14 : -- We check that C' is smooth of bidegree (3,11) and that meets C''
-- only in ordinary double points.
time isSmooth(C') -- about 47 seconds
o14 = true
i15 : multidegree C'
2
o15 = 11T T + 3T
0 1 1
o15 : ZZ[T , T ]
0 1
i16 : time isOrdDoublePoints(Y') -- about 86 seconds
o16 = true
i17 : -- We check that C' is of maximal rank in bidegree (b,2) for any
-- b and that it is contained in two transversal hypersurfaces
-- of bidegree (3,3), (4,3) respectively
tally degrees ideal mingens gb C'
o17 = Tally{{0, 11} => 1}
{1, 8} => 2
{1, 9} => 5
{2, 5} => 5
{3, 3} => 1
{3, 4} => 7
{4, 3} => 6
{5, 2} => 2
{6, 2} => 1
o17 : Tally
i18 : -- We choose random forms in the ideal of C' of bidegree (3,3), (4,3)
-- that define the complete intersection Y and compute the
-- saturated ideal C of the residual curve
fY={{3,3},{4,3}};
i19 : Y=ideal(gens C' * random(source gens C',S^(-fY)));
o19 : Ideal of S
i20 : time C=Y:(C'); -- about 29 seconds
o20 : Ideal of S
i21 : C=saturate(C,m);
o21 : Ideal of S
i22 : -- We check that C' is smooth of bidegree (6,10) and intersects
-- C'' only in ordinary double points
time isSmooth(C) -- about 61 seconds
o22 = true
i23 : multidegree C
2
o23 = 10T T + 6T
0 1 1
o23 : ZZ[T , T ]
0 1
i24 : time isOrdDoublePoints(Y) -- about 118 seconds
o24 = true
i25 : -- We check that C is of maximal rank in bidegree (a,3) for any a
-- and that the planar model of C is a non-degenerate curve of genus 10
-- and degree 10, hence it corresponds to a point in W^2_{10,10}
tally degrees ideal mingens gb C
o25 = Tally{{0, 10} => 1}
{1, 7} => 5
{2, 4} => 2
{2, 5} => 4
{3, 3} => 1
{3, 4} => 4
{4, 3} => 3
o25 : Tally
i26 :