+ M2
Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : needsPackage("UnirationalHurwitzSchemes")
o1 = UnirationalHurwitzSchemes
o1 : Package
i2 : --------------------------------------------------------------------------
-- Theorem 3.2 --
-- We construct a curve C of genus 13 and degree 17 in P^6 by liaison --
-- in P^6 of type (2,2,2,2,2) with respect to a general curve of genus --
-- 10 and degree 13, which is constructed as described in the paper --
-- from a general curve of genus 10 together with 3 marked points. We --
-- verify step-by-step all the assertions of the paper. The Serre dual --
-- model of C turns out to be a general element of W^1_{13,7}. --
--------------------------------------------------------------------------
p=32009; -- a prime number
i3 : Fp=ZZ/p; -- a prime field
i4 : -- We construct a random curve of genus 10 in P^1xP^2 together with 3
-- marked points
time L=randomGenus10CurveNMarkedPoints(p,3); -- about 14 seconds
i5 : ID'=L_0; threePoints=L_1;
o5 : Ideal of Fp[x , x , y , y , y ]
0 1 0 1 2
i7 : S=ring ID';
i8 : -- We compute the plane model of D' and the embedding D of D' in
-- P^6 via the complete linear system K-P, where P is the divisor
-- of the 3 points previously chosen. By construction, D is a
-- general curve of genus 10 and degree 15 in P^6
R=Fp[x_0..x_6];
i9 : P2=Fp[drop(flatten entries vars S,2)];
i10 : pi2=map(P2,S);
o10 : RingMap P2 <
i11 : IDPlane=sub(ID',P2);
o11 : Ideal of P2
i12 : RE=P2/IDPlane;
i13 : nodes=sub(saturate ideal jacobian ID',P2);
o13 : Ideal of P2
i14 : threePoints2=apply(threePoints,p-> trim pi2 p);
i15 : KminusD=gens truncate(6,intersect(threePoints2|{nodes}));
1 7
o15 : Matrix P2 <
i16 : emb=map(RE,R,sub(KminusD,RE));
o16 : RingMap RE <
i17 : ID=kernel emb;
o17 : Ideal of R
i18 : -- D has genus 10, degree 15 and it is smooth
degree ID, genus ID
o18 = (15, 10)
o18 : Sequence
i19 : jacobianD=jacobian ID;
7 18
o19 : Matrix R <
i20 : J=ID;
o20 : Ideal of R
i21 : subsetsSource=subsets(rank source jacobianD,5);
i22 : subsetsTarget=subsets(rank target jacobianD,5);
i23 : time while codim J < 7 do (
Ls=first random subsetsSource;
Lt=first random subsetsTarget;
J=J+minors(5,(jacobianD)_Ls^Lt);
) -- about 23 seconds
i24 : codim J==7
o24 = true
i25 : -- We take a random complete intersection of type (2,2,2,2,2)
-- containing the curve D and get C via liaison
Y=ideal ((gens ID)*(random(source gens ID, R^{5:-2})));
o25 : Ideal of R
i26 : -- viewHelp
IC=saturate(Y:ID,ideal basis(1,R));
o26 : Ideal of R
i27 : -- We verify that C is a smooth curve of genus 13 and degree 17
degree IC, genus IC
o27 = (17, 13)
o27 : Sequence
i28 : jacobianC=jacobian IC;
7 9
o28 : Matrix R <
i29 : J=IC;
o29 : Ideal of R
i30 : subsetsSource=subsets(rank source jacobianC,5);
i31 : subsetsTarget=subsets(rank target jacobianC,5);
i32 : time while codim J < 7 do (
Ls=first random subsetsSource;
Lt=first random subsetsTarget;
J=J+minors(5,(jacobianC)_Ls^Lt);
) -- about 8 seconds
i33 : codim J==7
o33 = true
i34 : -- We verify that C and D meet only in ordinary double points
INodes=ideal mingens(IC+ID);
o34 : Ideal of R
i35 : jacobianNodes=jacobian INodes;
7 11
o35 : Matrix R <
i36 : J=INodes;
o36 : Ideal of R
i37 : subsetsSource=subsets(rank source jacobianNodes,6);
i38 : subsetsTarget=subsets(rank target jacobianNodes,6);
i39 : time while codim J < 7 do (
Ls=first random subsetsSource;
Lt=first random subsetsTarget;
J=J+minors(6,(jacobianNodes)_Ls^Lt);
) -- about 8 seconds
i40 : codim J==7
o40 = true
i41 : -- We check that C is not contained in any hyperplane. It
-- turns out that C together with its embedding is an
-- element in W^6_{13,17}.
betti IC
0 1
o41 = total: 1 9
0: 1 .
1: . 6
2: . 3
o41 : BettiTally
i42 :