next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
UnirationalHurwitzSchemes :: isSmooth

isSmooth -- check whether an ideal defines a smooth curve in P1*P2

Synopsis

Description

This function computes the ramification divisor on C under the natural projection map of C to P1, and checks whether it intersects the preimage of the singular locus of the plane model of C under the second projection map.

i1 : p=101;
i2 : Fp=ZZ/p;
i3 : S=Fp[x_0,x_1,y_0..y_2,Degrees=>{2:{1,0},3:{0,1}}];
i4 : pt=ideal random(S^1,S^{{-1,0},{0,-1},{0,-1}});

o4 : Ideal of S
i5 : Y1=ideal(gens pt * random(source gens pt,S^{{-1,-1},{-1,-1}}));

o5 : Ideal of S
i6 : Y2=ideal(gens pt * random(source gens pt,S^{{-1,0},{0,-1}}));

o6 : Ideal of S
i7 : Y3=ideal(gens pt * random(source gens pt,S^{{-1,-1},{-2,-1}}));

o7 : Ideal of S
i8 : isSmooth(Y1)

o8 = true
i9 : isSmooth(Y2)

o9 = true
i10 : isSmooth(Y3)

o10 = true
i11 : isSmooth(intersect({Y1,Y2}))

o11 = false
i12 : isSmooth(intersect({Y1,Y2,Y3}))

o12 = false

Ways to use isSmooth :