next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
UnirationalHurwitzSchemes :: randomGenus10Degree8CoverOfP1

randomGenus10Degree8CoverOfP1 -- a general canonical curve of genus 10 with a g^1_8

Synopsis

Description

The function constructs a general curve C of genus 10 and bidegree (6,10) in P1*P2 with random8gonalGenus10Curve and constructs its canonical embedding in P10. By construction, if H is an hyperplane divisor in the planar model of the curve, then KC - H is a g18. The function returns a sequence (I, H1, H2), where I is the ideal of the canonically embedded curve in P10 and H1 and H2 are the hyperplanes passing through 10 points on the curve corresponding to H via the canonical embedding. A general linear combination of H1 and H2 cuts the curve in these 10 points plus 8 points corresponding to the g18. By construction, this procedure is rational and dominant.

i1 : p=32009;
i2 : time (I, H1, H2)=randomGenus10Degree8CoverOfP1(p);
     -- used 41.1145 seconds
i3 : genus I, degree I

o3 = (10, 18)

o3 : Sequence
i4 : K=I+ideal(random(ZZ)*H1+random(ZZ)*H2);

                ZZ
o4 : Ideal of -----[x , x , x , x , x , x , x , x , x , x ]
              32009  0   1   2   3   4   5   6   7   8   9
i5 : codim K, degree K

o5 = (9, 18)

o5 : Sequence
i6 : IH=I+ideal (H1)+ideal (H2); -- 2g-2-8=10 fixed points

                ZZ
o6 : Ideal of -----[x , x , x , x , x , x , x , x , x , x ]
              32009  0   1   2   3   4   5   6   7   8   9
i7 : codim IH, degree IH

o7 = (9, 10)

o7 : Sequence
i8 : KmH=K:IH; -- 8 moving points corresponding to the g^1_8

                ZZ
o8 : Ideal of -----[x , x , x , x , x , x , x , x , x , x ]
              32009  0   1   2   3   4   5   6   7   8   9
i9 : codim KmH, degree KmH

o9 = (9, 8)

o9 : Sequence

Ways to use randomGenus10Degree8CoverOfP1 :