next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
UnirationalHurwitzSchemes :: randomGenus13Degree7CoverOfP1

randomGenus13Degree7CoverOfP1 -- a general canonical curve of genus 13 with a g^1_7

Synopsis

Description

The function constructs a general curve C of genus 13 and degree 17 in P6 with randomGenus13Degree17CurveInP6 and constructs its canonical embedding in P12. By construction, if H is an hyperplane divisor in P6, then KC - H is a g17. The function returns a sequence (I, H1, H2), where I is the ideal of the canonically embedded curve in P12 and H1 and H2 are the hyperplanes passing through 17 points on the curve corresponding to H via the canonical embedding. A general linear combination of H1 and H2 cuts the curve in these 17 points plus 7 points corresponding to the g17. By construction, this procedure is rational and dominant.

i1 : p=32009;
i2 : time (I, H1, H2)=randomGenus13Degree7CoverOfP1(p);
     -- used 21.5907 seconds
i3 : genus I, degree I

o3 = (13, 24)

o3 : Sequence
i4 : K=I+ideal(random(ZZ)*H1+random(ZZ)*H2);

                ZZ
o4 : Ideal of -----[x , x , x , x , x , x , x , x , x , x , x  , x  , x  ]
              32009  0   1   2   3   4   5   6   7   8   9   10   11   12
i5 : codim K, degree K

o5 = (12, 24)

o5 : Sequence
i6 : IH=I+ideal (H1)+ideal (H2); -- 2g-2-7=17 fixed points

                ZZ
o6 : Ideal of -----[x , x , x , x , x , x , x , x , x , x , x  , x  , x  ]
              32009  0   1   2   3   4   5   6   7   8   9   10   11   12
i7 : codim IH, degree IH

o7 = (12, 17)

o7 : Sequence
i8 : KmH=K:IH; -- 7 moving points corresponding to the g^1_7

                ZZ
o8 : Ideal of -----[x , x , x , x , x , x , x , x , x , x , x  , x  , x  ]
              32009  0   1   2   3   4   5   6   7   8   9   10   11   12
i9 : codim KmH, degree KmH

o9 = (12, 7)

o9 : Sequence

Ways to use randomGenus13Degree7CoverOfP1 :